np.argmax
is a NumPy function that returns the indices of the maximum values along a specified axis in an array. If the input array is multi-dimensional, you can specify the axis along which the maximum values are computed.
Here’s a simple example:
1 2 3 4 5 6 7 8 9 10 | import numpy as np arr = np.array([ 1 , 5 , 2 , 8 , 3 ]) # Get the index of the maximum value in the array index_of_max_value = np.argmax(arr) print ( "Array:" , arr) print ( "Index of Maximum Value:" , index_of_max_value) print ( "Maximum Value:" , arr[index_of_max_value]) |
Output:
Array: [1 5 2 8 3]
Index of Maximum Value: 3
Maximum Value: 8
In this example, np.argmax(arr)
returns the index (position) of the maximum value in the array arr
. The maximum value is 8, and it is at index 3 (0-indexed).
You can also use np.argmax
with multi-dimensional arrays and specify the axis along which the maximum values should be computed. For example:
1 2 3 4 5 6 7 8 9 10 | import numpy as np arr_2d = np.array([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]) # Get the indices of the maximum values along each column (axis=0) indices_of_max_values = np.argmax(arr_2d, axis = 0 ) print ( "2D Array:" ) print (arr_2d) print ( "Indices of Maximum Values along Each Column:" , indices_of_max_values) |
Output:
2D Array:
[[1 2 3]
[4 5 6]
[7 8 9]]
Indices of Maximum Values along Each Column: [2 2 2]
In this 2D array example, np.argmax(arr_2d, axis=0)
returns the indices of the maximum values along each column (axis=0). The result is an array [2, 2, 2]
, indicating that the maximum values in each column are found in the third row.