Skip to content
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS
Close
Beyond Knowledge Innovation

Beyond Knowledge Innovation

Where Data Unveils Possibilities

  • Home
  • AI & ML Insights
  • Machine Learning
    • Supervised Learning
      • Introduction
      • Regression
      • Classification
    • Unsupervised Learning
      • Introduction
      • Clustering
      • Association
      • Dimensionality Reduction
    • Reinforcement Learning
    • Generative AI
  • Knowledge Base
    • Introduction To Python
    • Introduction To Data
    • Introduction to EDA
  • References
HomeImplementationSupervised LearningClassificationLabelEncoder of scikit-learn library
Classification

LabelEncoder of scikit-learn library

May 13, 2024May 13, 2024CEO 192 views

LabelEncoder is a utility class provided by the scikit-learn library in Python, specifically in the sklearn.preprocessing module. It is commonly used for encoding categorical labels into numerical labels.

Here’s what LabelEncoder does:

  1. Encoding Categorical Labels: It transforms categorical labels (strings or integers) into numerical labels. For example, suppose you have a categorical variable “red,” “blue,” “green.” LabelEncoder can transform these categories into numerical labels like 0, 1, 2.
  2. Mapping: It maintains a mapping between the original labels and the encoded labels, allowing you to later decode the numerical labels back to their original categorical values.
  3. Use with Machine Learning Models: LabelEncoder is often used in preprocessing steps before feeding data into machine learning algorithms. Many machine learning algorithms require numerical inputs, so encoding categorical labels into numerical form is often necessary.

Here’s an example of how to use LabelEncoder:

from sklearn.preprocessing import LabelEncoder

# Create an instance of LabelEncoder
label_encoder = LabelEncoder()

# Example categorical labels
labels = ['red', 'blue', 'green', 'red', 'green']

# Fit LabelEncoder to the labels and transform them into numerical labels
encoded_labels = label_encoder.fit_transform(labels)

print(encoded_labels)  # Output: [2 0 1 2 1]

# You can also decode the numerical labels back to their original categorical values
decoded_labels = label_encoder.inverse_transform(encoded_labels)

print(decoded_labels)  # Output: ['red' 'blue' 'green' 'red' 'green']

from keras.utils import to_categorical
one_hot_labels = to_categorical(encoded_Y)

Keep in mind that LabelEncoder is suitable for encoding target labels (dependent variables) in supervised learning tasks. However, for encoding features (independent variables), you might consider other techniques such as one-hot encoding (OneHotEncoder) or ordinal encoding (OrdinalEncoder).

Post navigation

Previous Post
Previous post: What is Deep Learning
Next Post
Next post: Keras library wrapper classes 
  • Recent
  • Popular
  • Random
  • No image
    7 months ago Low-Rank Factorization
  • No image
    7 months ago Perturbation Test for a Regression Model
  • No image
    7 months ago Calibration Curve for Classification Models
  • No image
    March 15, 20240Single linkage hierarchical clustering
  • No image
    April 17, 20240XGBoost (eXtreme Gradient Boosting)
  • No image
    April 17, 20240Gradient Boosting
  • No image
    March 8, 2024Post-pruning Decision Tree with Cost Complexity Parameter…
  • No image
    February 6, 2024How-to: clean a dataset
  • No image
    May 9, 2024Neural Network model building
  • Implementation (55)
    • EDA (4)
    • Neural Networks (10)
    • Supervised Learning (26)
      • Classification (17)
      • Linear Regression (8)
    • Unsupervised Learning (11)
      • Clustering (8)
      • Dimensionality Reduction (3)
  • Knowledge Base (44)
    • Python (27)
    • Statistics (6)
May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Oct    

We are on

FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS

Subscribe

© 2025 Beyond Knowledge Innovation
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS