Skip to content
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS
Close
Beyond Knowledge Innovation

Beyond Knowledge Innovation

Where Data Unveils Possibilities

  • Home
  • AI & ML Insights
  • Machine Learning
    • Supervised Learning
      • Introduction
      • Regression
      • Classification
    • Unsupervised Learning
      • Introduction
      • Clustering
      • Association
      • Dimensionality Reduction
    • Reinforcement Learning
    • Generative AI
  • Knowledge Base
    • Introduction To Python
    • Introduction To Data
    • Introduction to EDA
  • References
HomeKnowledge BasePythonHow-to: clean a dataset
Python

How-to: clean a dataset

February 6, 2024March 3, 2024CEO 165 views
Cleaning a dataset involves handling missing values, correcting errors, and preparing the data for analysis. Here are common steps to clean a dataset using Python and pandas:

  1. Identify Missing Values:
    • Use df.isnull() to identify missing values in the dataset.
    • Use df.isnull().sum() to get the count of missing values in each column.
  2. Handle Missing Values:
    • Decide on a strategy for handling missing values:
      • Remove rows with missing values using df.dropna().
      • Fill missing values with a specific value using df.fillna(value) or fill forward/backward using df.fillna(method='ffill'/'bfill').
  3. Remove Duplicates:
    • Use df.duplicated() to identify duplicate rows. You can use parameter keep=False to see all occurrences of a duplicated record, otherwise, by default, the first occurrence of each duplicated row is marked as False, and subsequent occurrences are marked as True.
    • Use df.drop_duplicates() to remove duplicate rows.
  4. Correct Data Types:
    • Ensure that columns have the correct data types (e.g., convert string columns to datetime using pd.to_datetime or df.astype).
  5. Correct Errors:
    • Identify and correct any errors or inconsistencies in the data.
  6. Standardize/Normalize Data:
    • Standardize or normalize numerical data if needed using methods like Min-Max scaling or Z-score normalization.
  7. Handle Outliers:
    • Identify and handle outliers in numerical data. You can use statistical methods or visualization techniques to detect outliers.
  8. Rename Columns:
    • Rename columns for clarity if necessary using df.rename(columns={'old_name': 'new_name'}).
  9. Remove Unnecessary Columns:
    • Remove columns that are not relevant for analysis using df.drop(columns=['col1', 'col2']).
  10. Ensure Consistent Casing:
    • Standardize the casing of text data if needed (e.g., convert all text to lowercase using df['column'].str.lower()).
  11. Check for Inconsistencies:
    • Check for inconsistent values in categorical columns and standardize if necessary.
  12. Impute or Remove Irrelevant Data:
    • If data is missing or irrelevant, consider imputing values or removing the entire row/column.
  13. Check for Data Integrity:
    • Ensure that the data is consistent and adheres to the expected business rules.
  14. Reindex Data:
    • If needed, reset or modify the index using df.reset_index() or df.set_index('new_index').
  15. Save Cleaned Dataset:
    • Save the cleaned dataset using df.to_csv('cleaned_data.csv') or a similar method.

Always document the steps taken during the cleaning process for transparency and reproducibility. Additionally, it’s crucial to thoroughly understand the context of the data and the goals of your analysis when making decisions during the cleaning process.

clean, drop nulls, duplicate, nan, pandas, python, replace, type

Post navigation

Previous Post
Previous post: How-to: formatting options for floating-point numbers in Pandas
Next Post
Next post: How-to: When missing data is of type categorical

You Might Also Like

No image
Delete a folder in Google Colab
June 20, 2024 Comments Off on Delete a folder in Google Colab
No image
Quantile-based discretization of continuous variables
April 29, 2024 Comments Off on Quantile-based discretization of continuous variables
No image
CDF plot of Numerical columns
March 12, 2024 Comments Off on CDF plot of Numerical columns
No image
Get a random sample from your dataset
March 7, 2024 Comments Off on Get a random sample from your dataset
No image
Python warnings module
March 3, 2024 Comments Off on Python warnings module
  • Recent
  • Popular
  • Random
  • No image
    7 months ago Low-Rank Factorization
  • No image
    7 months ago Perturbation Test for a Regression Model
  • No image
    7 months ago Calibration Curve for Classification Models
  • No image
    March 15, 20240Single linkage hierarchical clustering
  • No image
    April 17, 20240XGBoost (eXtreme Gradient Boosting)
  • No image
    April 17, 20240Gradient Boosting
  • No image
    March 5, 2024Receiver Operating Characteristic (ROC) and Area Under…
  • No image
    March 8, 2024Post-pruning Decision Tree with Cost Complexity Parameter…
  • No image
    April 17, 2024AdaBoost (Adaptive Boosting)
  • Implementation (55)
    • EDA (4)
    • Neural Networks (10)
    • Supervised Learning (26)
      • Classification (17)
      • Linear Regression (8)
    • Unsupervised Learning (11)
      • Clustering (8)
      • Dimensionality Reduction (3)
  • Knowledge Base (44)
    • Python (27)
    • Statistics (6)
May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Oct    

We are on

FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS

Subscribe

© 2025 Beyond Knowledge Innovation
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS