Skip to content
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS
Close
Beyond Knowledge Innovation

Beyond Knowledge Innovation

Where Data Unveils Possibilities

  • Home
  • AI & ML Insights
  • Machine Learning
    • Supervised Learning
      • Introduction
      • Regression
      • Classification
    • Unsupervised Learning
      • Introduction
      • Clustering
      • Association
      • Dimensionality Reduction
    • Reinforcement Learning
    • Generative AI
  • Knowledge Base
    • Introduction To Python
    • Introduction To Data
    • Introduction to EDA
  • References
HomeKnowledge BasePythonGet available Hyperparameters
Python

Get available Hyperparameters

April 24, 2024April 24, 2024CEO 153 views

get_params() is a method provided by scikit-learn estimators (such as classifiers, regressors, transformers, etc.) that returns a dictionary of the estimator’s parameters. These parameters are the hyperparameters that define the behavior of the estimator and can be tuned during the model selection or hyperparameter optimization process.

Here’s a simple example of how you might use get_params():

from sklearn.linear_model import LogisticRegression

# Create a LogisticRegression instance
clf = LogisticRegression()

# Get the parameters of the LogisticRegression estimator
params = clf.get_params()

print(params)

The output will be a dictionary containing the parameters and their values for the LogisticRegression estimator. These parameters typically include things like regularization strength (C), penalty type (penalty), solver algorithm (solver), etc.

hyperparameter

Post navigation

Previous Post
Previous post: Handling missing values with SimpleImputer
Next Post
Next post: RandomizedSearchCV vs GridSearchCV
  • Recent
  • Popular
  • Random
  • No image
    7 months ago Low-Rank Factorization
  • No image
    7 months ago Perturbation Test for a Regression Model
  • No image
    7 months ago Calibration Curve for Classification Models
  • No image
    March 15, 20240Single linkage hierarchical clustering
  • No image
    April 17, 20240XGBoost (eXtreme Gradient Boosting)
  • No image
    April 17, 20240Gradient Boosting
  • No image
    March 10, 2024Parameter cv in GridSearchCV
  • No image
    March 15, 2024Unsupervised Learning Dimensionality Reduction – Feature Elimination…
  • No image
    March 1, 2024Difference between R-square and Adjusted R-square
  • Implementation (55)
    • EDA (4)
    • Neural Networks (10)
    • Supervised Learning (26)
      • Classification (17)
      • Linear Regression (8)
    • Unsupervised Learning (11)
      • Clustering (8)
      • Dimensionality Reduction (3)
  • Knowledge Base (44)
    • Python (27)
    • Statistics (6)
May 2025
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Oct    

We are on

FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS

Subscribe

© 2025 Beyond Knowledge Innovation
FacebookTwitterLinkedinYouTubeGitHubSubscribeEmailRSS