1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D import random random.seed( 1 ) np.random.seed( 1 ) tf.random.set_seed( 1 ) (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data() # checking unique labels np.unique(y_train) # reshaping to one channel color X_train = X_train.reshape(X_train.shape[ 0 ], 28 , 28 , 1 ) X_test = X_test.reshape(X_test.shape[ 0 ], 28 , 28 , 1 ) # normalizing X_train_normalized = X_train.astype( 'float32' ) / 255.0 X_test_normalized = X_test.astype( 'float32' ) / 255.0 #encoding label classes y_train_encoded = tf.keras.utils.to_categorical(y_train) y_test_encoded = tf.keras.utils.to_categorical(y_test) #building CNN model model = Sequential( [ Conv2D( 64 , kernel_size = ( 3 , 3 ), input_shape = ( 28 , 28 , 1 ), activation = 'relu' , padding = 'same' ), MaxPooling2D(pool_size = ( 2 , 2 ), padding = 'same' ), Flatten(), Dense( 100 , activation = 'relu' ), Dense( 10 , activation = 'softmax' ) ] ) # checking trainable parameters model.summary() #compiling model model. compile (optimizer = 'adam' , loss = 'categorical_crossentropy' , metrics = [ 'accuracy' ]) # fitting with 5 epochs model.fit(X_train_normalized, y_train_encoded, epochs = 5 ) # checking training set accuracy model.evaluate(X_train_normalized, y_train_encoded) # checking test set accuracy model.evaluate(X_test_normalized, y_test_encoded) |